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In two recent articles, Mark Kaplan has offered a new theory of rational 
acceptance within the framework of Bayesian epistemology. In one of them 
(1981a), he discusses some of the foundational difficulties which confront 
both analyses o f  the concept of acceptance and normative theories of accep- 
tance, and he offers an analysis of the concept. In the other (1981b), he 
reviews some of those considerations and also offers a normative theory of 
acceptance, a sophisticated elaboration and modification of the confidence- 
threshold theory of acceptance that is designed to adjudicate correctly be- 
tween the desiderata of truth and comprehensiveness and also to be immune 
to the lottery paradox problem - a problem, first discussed by Henry Kyburg 
(1961) and Cad Hempel (1962), that seems fatal to the naive confidence- 
threshold view. Here, after a brief discussion of Kaplan's analysis of the con- 
cept of acceptance, I shall show that, in fact, Kaplan's revision of the confi- 
dence-threshold view is not immune to the lottery paradox problem. 

Central to Bayesian epistemology is the idea that a rational person's 
beliefs come in degrees that conform to the probability axioms. Within this 
framework, therefore, it is natural either to try to explicate 'accepting propo- 
sition P'  as 'having a "high enough" degree of confidence in P' or to reject 
the idea of acceptance altogether, supposing that the relevant epistemological 
phenomena (e.g., confirmation of scientific hypotheses) may be better under- 
stood in terms of degrees of confidence. Richard Jeffrey (1956, 1968, 1970) 
has elaborated the second alternative by defending the "probabilistic theory 
of science," according to which scientists neither accept nor reject hypotheses, 
but only assign probabilities to them. Kaplan rejects the first Bayesian alterna- 
tive, but, of course, does not endorse the second. One of the reasons Kaplan 
gives for rejecting the first alternative involves the lottery paradox. Since I 
shall later show that the lottery paradox presents difficulties for Kaplan's 
normative theory, it will be worthwhile to see here how the paradox figures 

Philosophical Studies 44 (1983) 331-343. 0031-8116/83/0443-0331 $01.30 
(~) 1983 by D. Reidel Publishing Company. 



332 E L L E R Y  E E L L S  

in Kaplan's rejection of the kind of analysis of the concept of acceptance 
suggested in the first alternative above. 

After rejecting the idea that the level of confidence definitive of accep- 
tance is that of certainty, Kaplan states, "if it is a state of confidence, accep- 

tance must be a state of confidence above some threshold - m o s t  plausibly, 
some threshold greater than or equal to .5", and he presents the confidence- 
threshold view of acceptance as follows: 

(1) There is a number n, .5 ~< n < 1, such that, for any person X 
and proposition P, X accepts P if and only if X has a degree of 
confidence that P greater than n (198 lb, p. 307). 1 

Now let us assume the following rationality constraints: 

(2) If X is rational, then 
(a) X accepts the conjunction of any propositions she accepts; 
(b) X accepts all the consequences of every proposition she 

accepts; and 
(c) X does not accept any contradiction (198 lb, p. 308). 

Initially, (1) and (2) may seem intuitively quite reasonable. But the lottery 

paradox generates a contradiction from the two theses - indeed ,  a counter- 
example to (1) if one accepts (2), as Kaplan does. First, choose any value for 
n as high as you please, short of 1 ; say n = .9. Next, we suppose that X is 
rational and has degree of confidence 1 in (and hence accepts) the proposi- 
tion, T, that there is a one-thousand-ticket fair lottery in which exactly one 
ticket will win. For each i = 1,2,  ..., 1000, let L i be the proposition that the 
ith ticket will lose. Then, assuming that X has the natural degrees of con- 
fidence (represented by the probability function prob) in connection with the 
lottery, prob(Li) = .999 for each i. Hence, according to (1) with n = .9, X 
accepts each L i. By (2) then, X also accepts the conjunction Lt &Lz & ... 
&Liooo. But --(LI &L2 & .. .&Llo0o) is a consequence of T; so, since X 
accepts T, it follows, by (2), that X accepts -(1,1 &L2 & ... &Llo0o). And 
s i nc e -  also by ( 2 ) -  X accepts all conjunctions of propositions which X 
accepts, X accepts the conjunction of the long conjunction with its negation; 
and since this conjunction is a contradiction, X accepts a contradiction, 
which, by (2) makes X not rational, contradicting our assumption that X is 

rational. So, either there are no rational people who accept propositions to 
the effect that there is a one-thousand-ticket fair lottery in which exactly 
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one ticket will win, or the  rationality constraint (2) is false, or (1) with 

n = .9 is false. Kaplan rejects the first two alternatives and endorses the 
third. And clearly, the same kind of  example will tell against (1) with any 

value of n short o f  1. Note that the lottery paradox only constitutes a counter- 

example to the sufficiency part - the " i f"-par t  - o f  the confidence-threshold 

view as expressed in (1). Kaplan presents another p u z z l e - t h e  preface 

paradox - as a counterexample to the "only i f"-part  of  (1). 

Kaplan diagnoses the failure of  (1) as an analysis of  acceptance as follows. 
The Bayesian foundations of  the idea of degrees of  confidence is decision 

theoretical. (At least it seems that this is the most promising among Bayesian 

approaches, as I have argued elsewhere (1982).) According to this approach, 

a rational person's degrees of  belief and degrees of  desire combine in a certain 
way to yield preferences. Also, via an appropriate "representation theorem,"  

one's subjective probabilities and desirabilities can be inferred (uniquely up 

to certain transformations) from one's preferences, if the preferences satisfy 

certain mild rationality constraints (e.g., transitivity and ant isymmetry)  and 
others of  a structural nature. Subjective probabilities (degrees of  confidence) 

and desirabilities are, then, more or less theoretical entities which "lie behind" 
and explain their more or less observable manifestations: preferences. Now 
Kaplan says that 

It is a mistake to suppose that the proper role of  acceptance-talk is to describe the 
doxastic input into rational deliberation. This is, rather, the role of confidence talk. The 
proper function of acceptance-talk is to describe a certain feature of our behavioral 
repertoire - the practice of defending propositions in the context of inquiry (1981a, 
p. 138). 

So Kaplan suggests that "we should view 'X accepts P '  as just shorthand for 

'X would defend P were her aim to defend the truth '  " (1981a, p. 138), 
where it is later explained that, " [b ]y  'aim to defend the truth '  I mean, rather, 
the aim to defend as comprehensive a part of  the truth as one can" (1981a, 

p. 139). Of course the desires for truth and comprehensiveness can conflict, 

as Kaplan points out. And it will be a task for the normative theory of 
acceptance to adjudicate between these two desires. 

Before turning to Kaplan's normative theory, I would like to point out a 
perhaps disturbing feature of  the proposed analysis of  the concept of  accep- 

tance. Prima facie, the analysis is in terms of the idea of defending proposi- 
tions. But it seems that, without altering the correctness of  the analysis or 
the degree to which it illuminates the concept of  acceptance, one could 
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substitute many other verbs for 'defend' in the analysis. For example, why 

not analyze 'X accepts P '  instead as 'X would try to refute P were X's aim to 

try to refute the truth',  or as 'X would write down a sentence in French 
which expresses P were X's aim to write down sentences in French which 
express the truth'? More generally along these lines, 'X accepts P '  might we 
analyzed as 'For anything ~ which it is within X's power to do to P, X would 
~o P were it X's aim to r the truth'. Now, since each of these analyses seems 

equally correct and illuminating, we should conclude that the use of the 
particular idea of defendingP does not in itself contribute any illumination of 

the concept of acceptance. So it is appropriate to ask what other features of 
Kaplan's analysis may be illuminating. All the other features of the analysis 

are shared by the other candidates given above. And it seems that the only 
relevant thing in common to all these analyses is that they each imply that if 
X accepts P then X treats P as a truth - i.e., regards P as true. Thus, it seems 

that Kaplan's analysis is illuminating just to the extent that the analysis of 
'accepts' as 'treats as a truth' or 'regards as true' is illuminating. While such an 
analysis seems correct to me, the extent to which it is adequate in other 

respects is unclear to me. 
Now if it could be established that X is rational only if X aimed to defend 

(all and only) the truth, then, perhaps, one would be inclined to analyze 'X 

accepts P '  as 'X defends P ' ,  where X is assumed to be rational. But, aside 

from the implausibility of the strong constraint on rationality, it would seem, 

intuitively, that there are many cases of accepting propositions which one 
does not defend. On the other hand,Kaplan states that inhis sense of 'defend', 
"to say that X defended P is not to say that X offered a defense o f P  - say, 

by offering an argument for P. Rather, it is to say simply that X asserted that 

P or assented to P "  (1981b, p. 311, n.). However, again, there would seem to 
be many cases of acceptance without corresponding assertion; and an analysis 

of acceptance in terms of assent would seem to be circular. 
In any case, let us assume that X wants to defend the truth - that is, the 

most comprehensive a part of the truth as X can. Kaplan's normative theory 
of acceptance deals with the sometimes competing desires to defend nothing 

but the truth and to defend as much of the truth as one can by first character- 
izing the strongest proposition which X shouM defend, where a proposition 
P is stronger than a proposition Q if P logically implies Q and Q does not 
logically imply P. Then the theory asserts that for any proposition P, X 
should accept P if the strongest proposition X should defend logically implies 
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P. I shall adopt Kaplan's words - w h i c h  were in turn adopted from similar 

usage by Isaac Levi (1967, 1980) - a n d  call the strongest proposition which 
X should defend 'the proposition which X shouM defend as strongest'. Also, 
we assume that X is rational in the Bayesian sense. 

In order to isolate the proposition which X should defend as strongest, 
Kaplan first characterizes the relation which holds between any two proposi- 
tions P and Q when P is stronger than Q and X should prefer defending P 
as strongest to defending Q as strongest. Then the proposition X should 

defend as strongest is defined to be (roughly) the disjunction of those maxima 
of this relation which have the greatest (equal) probability. To characterize 
this preference relation, Kaplan proceeds through a series of attempts, each 
superior to its predecessors. The first attempt: 

(3) There is a number c greater than .5 such that, for any P and Q 
where P is stronger than Q, X, if rational, will prefer defending P 
as strongest to defending Q as strongest if and only if prob(P) is 

greater than c .  prob (Q) (1981 b, p. 317). 

Now Kaplan feels that the preference relation under consideration should be 
transitive. But, on the above characterization, it will not be. The example 
he gives to show this lets prob(R)= 1, prob(Q) = .91, and prob(P)= .88, 
where P is stronger than Q, Q is stronger than R, and c = .9. Then Q is pre- 
ferred to R and P to Q; but P is not preferred to R. For this reason, Kaplan 
feels that (3) must be revised (and, indeed, the rest of his theory requires 
transitivity of the relation). 

Incidentally, it is by no means obvious that the relation being character- 
ized should be transitive anyway. Kaplan suggests that if one prefers to 
defend a proposition P as strongest to defending Q as strongest (where P 
is stronger than Q), then one has a good argument from Q to P, and "reflec- 
tion on the nature of argument and rational inference will alone suffice to 
motivate the judgment that any theory that prohibits the inference from R 
to P, yet prescribes the inference from R to Q and the inference from Q to 
P - as (3) does - is inadequate" (1981b, p. 320). But, of course, the kind of 
argument and rational inference on which we are supposed to reflect must 
be inductive argument and inductive inference, for if P is stronger than Q, 
then, by the definition of 'stronger than', there cannot be a deductively 
good argument from Q to P. However, the nature of inductive inference is 
not well enough understood, it seems to me, for reflection on the nature of 
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it clearly to yield the conclusion that inductive inference is transitive. And it 
certainly is not transitive on the model of inductive inference according to 
which the inductive strength of an argument is the probability of its conclu- 
sion conditional on the conjunction of its premises. 2 Note that when P is 
stronger~.than Q, the condition that prob(P) is greater than c-prob(Q) is 
equivalent to the condition that prob(P/Q), the probability of P conditional 
on Q, is greater than c. So Kaplan's example shows that on this conditional 
probability model, inductive inference is not transitive. More recently, 
Kaplan has suggested (in conversation) that the thesis of transitivity of the 
preference relation currently under consideration could be better supported 
from considerations involving preference more generally, pointing out that, 
as noted above, one Bayesian rationality constraint on an agent's preference 
relation (on options and outcomes) is that it is transitive. My intuitions are 
unclear here, however, so I cannot argue that the preference relation under 
consideration is or is not transitive. 

In any case, Kaplan modifies (3) with the help of the idea of a "good 
chain," where 

(1)2) For any P and Q and number c, a set of propositions A is a good 
chain from Q to P with respect to c for X =af 
(i) A is finite and linearly ordered; 
(ii) A has Q for its first member and P for its last; and 
(iii) for any two members of A, S and S', such that S'  is the 

immediate successor of S, S'  is stronger than S and prob(S') 
is greater than c. prob(S) (1981b, p. 320). 

Then the successor of (3) insures transitivity of the preference relation: 

(4) There is a number c greater than .5 such that, for any P and Q 
where P is stronger than Q, X, if rational, will prefer defending 
P as strongest to defending Q as strongest if" and only if" there is 
a good chain from Q to P with respect to c for X (1981b, p. 320). 

But Kaplan points out that, while (4) insures transitivity, it is still defective, 
for it suffers from basically the same lottery paradox problem" as the naive 
confidence-threshold view does. Let propositions T, L1, L2 .... ,L~ooo be as 
before (this is a slight modification of Kaplan's notation, which uses ' L t i ' s  

instead of 'Li's). And suppose that c = .9. Then the ordered set {T, T&L~,  
T&L1 &L2 .... , T& Li &Lz & . . .  8r isagoodchain from Tto T&LI  & 
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L2 & ... & L99o with respect to .9 for X, assuming that X has the natural 
degree of belief assignment with respect to the fair lottery. So, if X selects 
the value, .9 for c, then, according to (4), X should prefer defending T& 
La &L2 ~-..~r as strongest to defending T as strongest. "But," as 
Kaplan puts it, "I doubt that anyone will want to say that, confronted with a 
fair one-thousand-ticket lottery, X has a good argument for the claim that 
one of the last ten tickets will win" (1981b, p. 321). And note that for any 
given ten tickets, (4) will endorse the inference from T to the proposition 
that the winning ticket will be among those ten. 

Kaplan's way of modifying (4) to take care of counterexamples of this 
kind is to try to make precise the idea that each step in the good chain from 
T to T & L t  &L2 & . . .  ~r is arbitrary in that there is no good reason to 
prefer inferring T& L1 from T rather than inferring T&Li  from T, for any 
value of i other than 1 ; there is no good reason to prefer inferring T & L 1 & 
L2 from T&L1 rather than inferring T&L1 &L i from T&La,  for any 
value of i other than 1 and 2; and so on. His definition (where ' ~ '  means 
'is roughly equal to'): 

(D3) 

(i) 
(ii) 
(iii) 

Or) 
and 
(v) 

For any P, Q, and number c, P is arbitrary with respect to Q and c 
for X =of P is a member of a set of propositions {R1, R2 .... , Rn } 
such that 

each R i is stronger than Q; 
for each Ri, prob(Ri) is greater than c- prob(Q); 

for each i andj, i =/=j, prob(Ri/Ri) ~ prob(Ri/Ri) ~ prob(Ri); 
prob(Rl & R2 & ... & Rn) is not greater than c. prob(Q); 

there is no set A satisfying ( i )-( iv)  such that each member 
of A is both stronger than at least one R i and stochastically 
independent of P (1981b, p. 322). 

Then a good chain is defined to be tarnished (1981b, p. 324) if it has a pair 
of successive elements where the second is arbitrary with respect to the first 
(and the appropriate number c, for X). Then (4) is revised to yield its succes- 
sor, (5), according to which X should prefer defending the stronger P as 
strongest to defending Q as strongest if, and only if, there is an untarnished 
good chain from Q to P with respect to the appropriate number c for X 
(1981b, p. 325). 
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Does this work? In particular, is the good chain, above, from T to T& 
L 1 & L 2 & --. & L 99 o a tarnished chain ? Kaplan says: 

(T & L1) , by  virtue of its membership in ~(T & LI) , (T & L2) ..... (T& Llooo ) }, is arbi- 
trary with respect to T and .9 for X. Similarly, (T & L, & Lu), by virtue of its member- 
ship in {(T & L~ & L~), (T & L~ & L3) .. . .  , (T & L1 & L ~0oo)~, is arbitrary with respect 
to (T& La) and .9 for X - and so on (1981b, p. 322, with the change in notation ex- 
plained earlier). 

If all this were true, then the relevant chain would be tarnished so that by 
Kaplan's modification of thesis (4), we would not be able to conclude that 
X should prefer defending T&L1 &L2 & ... ~:L99o as strongest to defend- 
ing T as strongest. But, as I will show below, none of the steps in the good 
chain under discussion is arbitrary on Kaplan's defmition (D3), so that the 
chain is, on Kaplan's definition, actually untarnished. But fkst, some com- 
ments on the conditions in (D3). 

It's clear why clauses (i) and (ii) should be part of the definition: the idea 
is just that the Ri's are to be indistinguishable from P with respect to which 
one of them X should prefer defending as strongest over defending Q as 
strongest. It is this indistinguishability from the other Ri's which, intuitively, 
constitutes the arbitrariness of P. But I cannot see any intuitive motivation 
for clause (iii), although Kaplan gives an example (1981b, p. 324) of an 

intuitively tarnished chain that wouldn't be' tarnished according to the 
definition if we substituted '=' for ' ~ '  in (iii). But, of course, the intuitively 

tarnished chain wouM be tarnished according to the definitions if clause (iii) 
were just left out of (D3). Kaplan just assumes (1981b, p. 322) that the 
motivation for the other features of clause (iii) should be clear. Nor is it clear 
to me why clause (iv) should be a part of the definition of 'arbitrary', al- 
though Kaplan gives an example of an intuitively tarnished chain that wouldn't 
be tarnished according to the det'mitions if clause (iv) of (I)3) required R 1 & 
Re & ... & Rn to be inconsistent or to have probability 0 rather than just 
requiring it to have probability not greater than c.  prob(Q). But again, the 
intuitively tarnished chain wouM be tarnished according to the definitions if 
clause (iv) were just left out of (D3). Perhaps the idea behind clause (iv) is 
that it will be harmless to infer one among several intuitively arbitrary pro- 
positions if the inference to the conjunction of them all is rationally warranted. 

Kaplan explains that requirement (v) is included in order to avoid a 
problem pointed out to him by Allan Gibbard. Let P be any proposition that 
is stronger than T, that has probability 1000/1001, and which is probabilis- 
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tically independent of all consistent truth-functional compounds of the pro- 
positions T, L1, L~ ..... Llooo of the lottery example. That is, other than 
being stronger than T, P is unrelated to the lottery. Then the set {P, T & 
( - P V  L1), T & ( - e v  L2) ..... T & ( - P v  Llooo)} satisfies clauses (i)-(iv) of 
(D3). Kaplan explains that this should not count against P and that clause 
(v) in the definition saves P from being arbitrary by virtue of its membership 
in this set; for the set { T & L I ,  T & L 2  .... ,T&Llooo} satisfies (i)-(iv), 
each member of it is stronger than at least one member of Gibbard's set, and 
each member of it is stochastically independent of P. 

But the inclusion of clause (v) in the defmition cannot be right. First, on 
the intuitive level, no rationale is given for the three parts of (v), other than 
that, together, they save the theory of acceptance from one counterexample. 
On the intuitive level, (v) is ad hoc. But also, formally, the inclusion of (v) 
has just the opposite effect of leaving it out, in an extreme way: leaving (v) 
out makes Gibbard's innocent proposition P arbitrary, but including (v) 
renders every proposition that is stronger than Q and which has a probabili- 
ty greater than c-prob(Q) nonarbitrary with respect to Q, c and rational X. 
That is, no set that satisfies (i)-(iv) in (I)3) will satisfy (v): there will always 
be a set A whose existence renders (v) unsatisfied. I will not prove this claim 
in general. For simplicity, I will simply show that the set which Kaplan asserts 
renders the first step in the lottery paradox chain arbitrary does not satisfy 
(v). From this, the pattern of the more general argument can be seen. 

What I wish to show is that T & L I ' s  membership in { T & L I ,  T & L 2  .... 

T&Llooo}  (call this set 'B') does not render T&L1 arbitrary with respect 
to T and .9 for X. This is because the set B does not satisfy clause (v) of the 
dei~mition of arbitrariness (with respect to T and .9 for X): there is a set 
with the properties described in clause (v). Let T* be the proposition 'There 
is a 999-ticket fair lottery, and exactly one ticket will win'. Let L~ be the 
proposition "Ticket i of the 999-ticket fair lottery will lose', for each i = 
2, 3, ..., 1000. (Assuming that the tickets of this lottery are numbered from 
2 to 1000, rather than from 1 to 999, will simplify the notation in the 
argument that follows.) And let us assume that the outcomes of this second, 
999-ticket lottery are independent of the outcomes of the first, 1000-ticket 
lottery (relative to X's subjective probability assignment, prob). And for 
smoothness in the derivations to follow, let us assume that prob(T) = prob(T*) 
= I. (The derivations would go through, less smoothly though, if T and T* 
were just assumed to be probabilistically independent of each other.) Now, 
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for each i = 2, 3 ..... 1000, let Si be the proposition L1 V L~, and letA be the 

set ( T &  T* & L2 & $2, T &  T* &L3 &S3 ..... T& T* & Llooo & $1ooo}. First 
note that each member of A is stronger than at least one member of B: T& 
T * & L i & S  i is stronger than T & L i ,  for each i = 2 ,  3, . . . ,1000. Second, 
each member of A is stochastically independent of T & L 1 : for each member 
of A, its probability conditional on T&L~ is equal to its unconditional 
probability, which is 998/999, as I now show. For each i = 2, 3 ..... 1000, 

prob(T & T* & Li & Si/T & L,)  = prob(Li & SilL 1) 
(by the assumption that 
prob(T) = prob(T*) = 1) 

= prob(Li/L 1) (because L1 logically implies Si) 
= 998]999 (because if ticket 1 loses, there 

are 999 tickets left, each with a 
998/999 chance of losing); 

and 

prob(T& T "~ & L i & Si) = prob(Li & Si) 
(by the assumption that 
prob(T) = prob(T*) = 1) 

= prob(Li & (LI V ( - L ,  & L ~'))) 
(Si is logically equivalent to 
L, V (-L1 &L?))  

= prob((Li & L , ) v  (L i & -L1  &L~))  
(by the logical law of distribu- 
tion) 

= prob(Li & L1) + prob(Li & -L1 & L~) 
(by the addition axiom of proba- 
bility and the fact L i & L 1 and 

Li & - L 1  & L~ are mutually ex- 
clusive) 

= prob(Li &L1) + prob(-L~ &LT) 

(since -L1  logically implies Li, 
in the presence of T, which is be- 
lieved to degree 1) 
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And finally, 

O) 
(ii) 

= prob(Li)prob(L,/Li) + prob( -L  1)prob(L ~) 
(by the multiplication rule and 
the assumption that the two lot- 
teries are independent) 

= (999/1000)(998/999) + (1/1000)(998/999) 
(by the nature of the lotteries) 

= 998/999 (arithmetic). 

the set A satisfies clauses ( i)-( iv) of (D3) (with respect to T): 

Clearly, each T & 7"* & L i & S i is stronger than T. 
We saw above that, for each i= 2, 3 ..... 1000, prob(T& T* & 
L & Si) = 998/999. And this is greater than c" prob(T) if c = .9 
and prob(T) = 1. 

(iii) It is easy to check that for all i and j, where i --/:j, prob(T& T* & 

L i & S i / T &  T*&L i & Si)=prob(r& T* & L  i & S j / T &  T* &Li & 
Si) = 997/999; and this is ~ prob(T & 7'* & L i & Si) = 998/999, 
relative to the fineness of the distinctions drawn in the example. 

(iv) The conjunction of the members of A is inconsistent, so its 
probability is not greater than c. prob(T). 

Thus, T&L1 is not, by virtue of its membership in set B, arbitrary with 
respect to T and .9 for X. Using the same kind of argument, it can be shown 
that there is no set C such that, by virtue of T & L l's membership in C, T & L 1 
is arbitrary with respect to T and .9 for X. Similarly, none of the other steps 
in the good chain from T to T&L1 &L2 & ...&L990 involves the kind of 

arbitrariness defined in Kaplan's (I)3). So the theory, as stated, unfortunately 
does endorse the inference from T to the proposition that the winning ticket 
will be among the last ten, and, in fact, any inference from T to  a proposition 
that the winning ticket will be among some given ten tickets. 

It may seem that a possible way out of the problem just described for (D3) 
would be to relativize the notion of arbitrariness to a given language. Thus, 
clause (v) would require that there is no set A of propositions in some language 

~Q'~ has the features specified in the original version of clause (v). IL.Q/' 
consisted just of the propositions T, L~, L2, ,..,L1ooo, together with truth- 
functional compounds of these propositions, then the set A constructed 
above would not be in violation of the condition, forA is not in J .  Of course 
given such a relativization, not even the problem pointed out by Allan Gibbard 
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would be a difficulty for Kaplan's theory, in which case the details of  clause 

(v) would not even have that as a motivating rationale, let alone any intuitive 

rationale. Nevertheless, perhaps Kaplan's insights about acceptance could be 

saved and given a satisfactory formulation using the idea of  relativizing the 

notion of  arbitrariness to a given language. But then, such a revised theory of  

rational acceptance would have to motivate satisfactorily the idea of  such 

relativization and say why  we should relativize to one language rather than 

another in any given case. 

I believe that there is something correct in Kaplan's intuition that the 

inductive reasoning which generates the lottery paradox involves a "vicious" 

arbitrariness o f  some k i n d -  an arbitrariness which the naive confidence- 

threshold view did not even attempt to exclude in its characterization o f  

rational acceptance. Kaplan's theory attempts to deal with this arbitrariness, 

but with using only the same tools with which the naive view attempted to 

characterize acceptance and say when acceptance is rationally warranted: 

purely formal probabilistic characteristics of  the relevant propositions, 

generated by a person's degrees of  confidence. And it seems to me that, with- 

out somehow restricting the language (and somehow justifying this), it will 

always be possible to invent "grue" type propositions (such as the Si's, above) 

that will show the inadequacy of  any purely formal characterization of  

arbitrariness. Perhaps an appropriate notion o f  arbitrariness can be character- 

ized in terms of  some kind of  semantic symmetry among the relevant proposi- 

tions. 

N O T E S  

* This paper was written under a grant from the University of Wisconsin-Madison Grad- 
uate School, which I gratefully acknowledge. I would also like to thank Mark Kaplan 
for a number of useful suggestions. 
1 In his (1981a), Kaplan first criticizes, along the lines given below, the contidence- 
threshold view understood as a normative canon of acceptance (where 'accepts' in (1) is 
read as "accepts, ff rational' or 'should accept3 and later gives a different critique of the 
confidence-threshold view as an analysis o f  the concept of acceptance than the one given 
below. Here, however, (1) is to be understood as a proposed analysis of the concept of 
acceptance. 
2 See, e.g., Brian Skyrms: 1975, Choice and Chance, pp. 6-13. 
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